Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 45: 339-360, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35363534

RESUMO

Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interactions occur at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interactions.


Assuntos
Sistema Imunitário , Neuroimunomodulação , Neuroimunomodulação/fisiologia , Sistema Nervoso Periférico
2.
Nature ; 597(7876): 410-414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408322

RESUMO

Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the ß2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.


Assuntos
Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Imunidade Inata/imunologia , Mesoderma/citologia , Vias Neurais , Neurônios/citologia , Obesidade/metabolismo , Tecido Adiposo/citologia , Animais , Encéfalo/citologia , Sinais (Psicologia) , Citocinas/metabolismo , Metabolismo Energético , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gônadas/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
3.
Cancers (Basel) ; 13(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070311

RESUMO

Antibodies are commonly used in cancer immunotherapy because of their high specificity for tumor-associated antigens. The binding of antibodies can have direct effects on tumor cells but also engages natural killer (NK) cells via their Fc receptor. Mucin 1 (MUC1) is a highly glycosylated protein expressed in normal epithelial cells, while the under-glycosylated MUC1 epitope (MUC1-Tn/STn) is only expressed on malignant cells, making it an interesting diagnostic and therapeutic target. Several anti-MUC1 antibodies have been tested for therapeutic applications in solid tumors thus far without clinical success. Herein, we describe the generation of fully humanized antibodies based on the murine 5E5 antibody, targeting the tumor-specific MUC1-Tn/STn epitope. We confirmed that these antibodies specifically recognize tumor-associated MUC1 epitopes and can activate human NK cells in vitro. Defucosylation of these newly developed anti-MUC1 antibodies further enhanced antigen-dependent cellular cytotoxicity (ADCC) mediated by NK cells. We show that endocytosis inhibitors augment the availability of MUC1-Tn/STn epitopes on tumor cells but do not further enhance ADCC in NK cells. Collectively, this study describes novel fully humanized anti-MUC1 antibodies that, especially after defucosylation, are promising therapeutic candidates for cellular immunotherapy.

4.
J Hematol Oncol ; 14(1): 73, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933160

RESUMO

Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Engenharia Tecidual/métodos , Humanos
5.
Mol Ther Methods Clin Dev ; 17: 634-646, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32300610

RESUMO

Adoptive natural killer (NK) cell therapy is attaining promising clinical outcomes in recent years, but improvements are needed. Genetic modification of NK cells with a tumor antigen-specific receptor on their surface coupled to intracellular signaling domains may lead to enhanced cytotoxicity against malignant cells. One of the most common approaches is by lentivirus-mediated transduction. However, NK cells are difficult to transduce and various methods have been attempted with different success rates. Because the low-density lipoprotein-receptor (LDLR) is the receptor of vesicular stomatitis virus (VSV) and is expressed only at low levels on NK cells, we tested the potential of 5 statins and 5 non-statin compounds to increase the LDLR expression, thereby facilitating viral transduction. We found that the transduction efficiency of VSV-G pseudotyped lentivirus is augmented by statins that induced higher LDLR expression. In both NK-92 cells and primary NK cells, the transduction efficiency increased after treatment with statins. Furthermore, statins have been reported to suppress NK cell cytotoxicity; however, we showed that this can be completely reversed by adding geranylgeranyl-pyrophosphate (GGPP). Among the statins tested, we found that the combination of rosuvastatin with GGPP most potently improved viral transduction without affecting the cytotoxic properties of the NK cells.

6.
Immunity ; 49(1): 9-11, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021148

RESUMO

Pulmonary neuroimmune networks have emerged as important regulators of lung homeostasis. In a recent issue of Science, Sui et al. show that strategically positioned pulmonary neuroendocrine cells amplify allergic airway responses via group 2 innate lymphoid cells.


Assuntos
Asma , Humanos , Pulmão , Linfócitos , Células Neuroendócrinas
7.
Antioxidants (Basel) ; 7(3)2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534432

RESUMO

Vitamin C or ascorbic acid (AA) is implicated in many biological processes and has been proposed as a supplement for various conditions, including cancer. In this review, we discuss the effects of AA on the development and function of lymphocytes. This is important in the light of cancer treatment, as the immune system needs to regenerate following chemotherapy or stem cell transplantation, while cancer patients are often AA-deficient. We focus on lymphocytes, as these white blood cells are the slowest to restore, rendering patients susceptible to often lethal infections. T lymphocytes mediate cellular immunity and have been most extensively studied in the context of AA biology. In vitro studies demonstrate that T cell development requires AA, while AA also enhances T cell proliferation and may influence T cell function. There are limited and opposing data on the effects of AA on B lymphocytes that mediate humoral immunity. However, AA enhances the proliferation of NK cells, a group of cytotoxic innate lymphocytes. The influence of AA on natural killer (NK) cell function is less clear. In summary, an increasing body of evidence indicates that AA positively influences lymphocyte development and function. Since AA is a safe and cheap nutritional supplement, it is worthwhile to further explore its potential benefits for immune reconstitution of cancer patients treated with immunotoxic drugs.

8.
Curr Top Microbiol Immunol ; 393: 67-105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26341110

RESUMO

Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.


Assuntos
Agamaglobulinemia/enzimologia , Autoimunidade , Linfócitos B/enzimologia , Diferenciação Celular , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Proteínas Tirosina Quinases/imunologia , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Agamaglobulinemia/fisiopatologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Proteínas Tirosina Quinases/genética , Transdução de Sinais
9.
Arthritis Rheumatol ; 66(2): 340-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24504806

RESUMO

OBJECTIVE: Interleukin-17A (IL-17A) signals through the IL-17 receptor (IL-17R) A/C heterodimer. IL-17RA serves as a common receptor subunit for several IL-17 cytokine family members. Lack of IL-17RA signaling may therefore have additional effects beyond those of lack of IL-17A alone. The present study was undertaken to determine the role of IL-17RA signaling in autoimmune arthritis. METHODS: Disease incidence and severity were scored in type II collagen-treated wild-type, IL-17RA-deficient, and IL-23p19-deficient mice. T helper cell profiles and humoral immune responses were analyzed at several time points. Pathogenicity of T cells and total splenocytes was determined by in vitro functional assay. IL-17RA signaling was blocked in vivo in mice with antigen-induced arthritis (AIA). RESULTS: Comparable to the findings in IL-23p19-deficient mice, IL-17RA-deficient mice were completely protected against the development of collagen-induced arthritis (CIA). However, IL-17RA-deficient mice exhibited an increased number of IL-4-producing CD4+ T cells, distinct from IL-17A+CD4+ T cells. This was associated with fewer plasma cells, lower production of pathogenic IgG2c antibody, and increased production of IgG1 antibody. Both isolated CD4+ T cells and total splenocytes from IL-17RA-deficient mice had a reduced ability to induce IL-6 production by synovial fibroblasts in the setting of CIA, in a functional in vitro assay. Furthermore, blocking of IL-17RA signaling in AIA reduced synovial inflammation. CONCLUSION: These results demonstrate that absence of IL-17RA leads to a Th2-like phenotype characterized by IL-4 production and suggest that IL-17RA signaling plays a critical role in the regulation of IL-4 in CIA and the development of autoimmune inflammation of the joint.


Assuntos
Artrite Experimental/patologia , Doenças Autoimunes/prevenção & controle , Inflamação/prevenção & controle , Articulações/patologia , Fenótipo , Receptores de Interleucina-17/deficiência , Transdução de Sinais/fisiologia , Células Th2/patologia , Animais , Artrite Experimental/fisiopatologia , Doenças Autoimunes/fisiopatologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Inflamação/fisiopatologia , Interleucina-17/metabolismo , Subunidade p19 da Interleucina-23/deficiência , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/fisiologia , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/patologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/fisiologia , Índice de Gravidade de Doença
10.
J Exp Med ; 211(2): 199-208, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24419270

RESUMO

Group 3 innate lymphoid cells (ILC3) include IL-22-producing NKp46(+) cells and IL-17A/IL-22-producing CD4(+) lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt(+) ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt(+) ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.


Assuntos
Fator de Transcrição GATA3/imunologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Imunidade Adaptativa , Animais , Citrobacter rodentium , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Infecções por Enterobacteriaceae/imunologia , Feminino , Desenvolvimento Fetal/imunologia , Fator de Transcrição GATA3/deficiência , Fator de Transcrição GATA3/genética , Imunidade nas Mucosas , Interleucinas/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Gravidez , Interleucina 22
11.
J Immunol ; 192(4): 1385-94, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24415780

RESUMO

Airway inflammation in allergic asthma reflects a threshold response of the innate immune system, including group 2 innate lymphoid cells (ILC2), followed by an adaptive Th2 cell-mediated response. Transcription factor Gata3 is essential for differentiation of both Th2 cells and ILC2. We investigated the effects of enforced Gata3 expression in T cells and ILC2 on the susceptibility of mice to allergic airway inflammation (AAI). We used CD2-Gata3 transgenic (Tg) mice with enforced Gata3 expression driven by the CD2 promoter, which is active both in T cells and during ILC2 development. CD2-Gata3 Tg mice and wild-type (WT) littermates were analyzed in mild models of AAI without adjuvants. Whereas OVA allergen exposure did not induce inflammation in WT controls, CD2-Gata3 Tg mice showed clear AAI and enhanced levels of IL-5 and IL-13 in bronchoalveolar lavage. Likewise, in house dust mite-driven asthma, CD2-Gata3 Tg mice were significantly more susceptible to AAI than WT littermates, whereby both ILC2 and Th2 cells were important cellular sources of IL-5 and IL-13 in bronchoalveolar lavage and lung tissue. Compared with WT littermates, CD2-Gata3 Tg mice contained increased numbers of ILC2, which expressed high levels of IL-33R and contributed significantly to early production of IL-4, IL-5, and IL-13. CD2-Gata3 Tg mice also had a unique population of IL-33-responsive non-B/non-T lymphoid cells expressing IFN-γ. Enforced Gata3 expression is therefore sufficient to enhance Th2 and ILC2 activity, and leads to increased susceptibility to AAI after mild exposure to inhaled harmless Ags that otherwise induce Ag tolerance.


Assuntos
Asma/imunologia , Fator de Transcrição GATA3/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Asma/induzido quimicamente , Líquido da Lavagem Broncoalveolar/imunologia , Antígenos CD2/genética , Fator de Transcrição GATA3/biossíntese , Fator de Transcrição GATA3/genética , Inflamação/imunologia , Interferon gama/biossíntese , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/biossíntese , Interleucina-13/metabolismo , Interleucina-4/biossíntese , Interleucina-4/metabolismo , Interleucina-5/biossíntese , Interleucina-5/metabolismo , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina , Regiões Promotoras Genéticas , Receptores de Interleucina/biossíntese , Receptores de Interleucina/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(25): 10240-5, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733962

RESUMO

Group 2 innate lymphoid cells (ILC2s; also called nuocytes, innate helper cells, or natural helper cells) provide protective immunity during helminth infection and play an important role in influenza-induced and allergic airway hyperreactivity. Whereas the transcription factor GATA binding protein 3 (Gata3) is important for the production of IL-5 and -13 by ILC2s in response to IL-33 or -25 stimulation, it is not known whether Gata3 is required for ILC2 development from hematopoietic stem cells. Here, we show that chimeric mice generated with Gata3-deficient fetal liver hematopoietic stem cells fail to develop systemically dispersed ILC2s. In these chimeric mice, in vivo administration of IL-33 or -25 fails to expand ILC2 numbers or to induce characteristic ILC2-dependent IL-5 or -13 production. Moreover, cell-intrinsic Gata3 expression is required for ILC2 development in vitro and in vivo. Using mutant and transgenic mice in which Gata3 gene copy number is altered, we show that ILC2 generation from common lymphoid progenitors, as well as ILC2 homeostasis and cytokine production, is regulated by Gata3 expression levels in a dose-dependent fashion. Collectively, these results identify Gata3 as a critical early regulator of ILC2 development, thereby extending the paradigm of Gata3-dependent control of type 2 immunity to include both innate and adaptive lymphocytes.


Assuntos
Fator de Transcrição GATA3/genética , Interleucina-13/genética , Interleucina-5/genética , Linfócitos/imunologia , Animais , Asma/genética , Asma/imunologia , Fator de Transcrição GATA3/imunologia , Dosagem de Genes/genética , Dosagem de Genes/imunologia , Homeostase/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-13/imunologia , Interleucina-33 , Interleucina-5/imunologia , Interleucinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Curr Allergy Asthma Rep ; 13(3): 271-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563812

RESUMO

CD4(+) T helper-2 (Th2) cells, which produce a unique profile of IL-4, IL-5 and IL-13 pro-inflammatory cytokines, are thought to be central in the orchestration and amplification of allergic asthma. However, a novel non-T/non-B lymphoid cell population, named type 2 innate lymphocytes (ILC2s), that produces high amounts of IL-5 and IL-13 was recently discovered. Unlike Th2 cells, these ILC2s are not antigen-restricted and are activated by epithelial cell-derived cytokines IL-25 and IL-33. In this review, we will focus on recent studies, mainly involving allergen-based mouse models, that have provided evidence for a significant contribution of ILC2 to allergic airway information.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Hipersensibilidade/imunologia , Linfócitos/fisiologia , Mucosa Respiratória/imunologia , Animais , Citocinas/imunologia , Humanos
14.
Blood ; 121(10): 1749-59, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23287858

RESUMO

Transcription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly understood. We show that GATA-3 works in concert with Notch1 to commit thymic progenitors to the T-cell lineage via 2 distinct pathways. First, GATA-3 orchestrates a transcriptional "repertoire" that is required for thymocyte maturation up to and beyond the pro-T-cell stage. Second, GATA-3 critically suppresses a latent B-cell potential in pro­T cells. As such, GATA-3 is essential to sealing in Notch-induced T-cell fate in early thymocyte precursors by promoting T-cell identity through the repression of alternative developmental options.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Fator de Transcrição GATA3/fisiologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Timo/citologia , Animais , Linfócitos B/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Knockout , Receptor Notch1/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Timo/embriologia , Timo/imunologia , Fatores de Transcrição/metabolismo
15.
Eur J Immunol ; 42(5): 1106-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22539286

RESUMO

Allergic asthma is characterized by chronic airway inflammation and hyperreactivity and is thought to be mediated by an adaptive T helper-2 (Th2) cell-type immune response. Here, we demonstrate that type 2 pulmonary innate lymphoid cells (ILC2s) significantly contribute to production of the key cytokines IL-5 and IL-13 in experimental asthma. In naive mice, lineage-marker negative ILC2s expressing IL-7Rα, CD25, Sca-1, and T1/ST2(IL-33R) were present in lungs and mediastinal lymph nodes (MedLNs), but not in broncho-alveolar lavage (BAL) fluid. Upon intranasal administration of IL-25 or IL-33, an asthma phenotype was induced, whereby ILC2s accumulated in lungs, MedLNs, and BAL fluid. After IL-25 and IL-33 administration, ILC2s constituted ∼50 and ∼80% of IL-5(+) /IL-13(+) cells in lung and BAL, respectively. Also in house dust mite-induced or ovalbumin-induced allergic asthma, the ILC2 population in lung and BAL fluid increased significantly in size and ILC2s were a major source of IL-5 or IL-13. Particularly in OVA-induced asthma, the contribution of ILC2s to the total population of intracellular IL-5(+) and IL-13(+) cells in the lung was in the same range as found for Th2 cells. We conclude that both ILC2s and Th2 cells produce large amounts of IL-5 and IL-13 that contribute to allergic airway inflammation.


Assuntos
Asma/imunologia , Imunidade Inata , Interleucina-13/biossíntese , Interleucina-5/biossíntese , Pulmão/imunologia , Linfócitos/imunologia , Animais , Antígenos Ly/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Proteína 1 Semelhante a Receptor de Interleucina-1 , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucina-33 , Interleucinas/administração & dosagem , Linfonodos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia , Receptores de Interleucina/imunologia , Receptores de Interleucina-7/imunologia , Células Th2/imunologia
16.
Immunol Rev ; 238(1): 126-37, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20969589

RESUMO

T lymphocytes depend on the thymic microenvironment for initiation of the T-cell developmental program. As the progenitors in the thymus have lost the capacity to self-renew, this process depends on the constant influx of hematopoietic progenitors that originate in the bone marrow. Nevertheless, thymic emigrants are heterogeneous and retain developmental plasticity for both the myeloid and lymphoid lineages. It is the role of the thymic microenvironment to steer these uncommitted progenitors toward a T-cell fate. Still, the thymus also generates a unique population of thymic NK cells, thus raising the question of how the T versus NK lymphoid cell fate is determined intrathymically. Many factors have been implicated in the developmental pathways in the thymus, and the processes are characterized by both subtle and not so subtle modifications in gene expression. In this review, we consider the crucial factors governing lineage determination of T cells versus NK cells from bi-potent thymic NK/T precursors. Recent reports have shed new light on the complex interactions of cytokines and transcription factors at different cell fate decision branch points in thymopoiesis. We discuss the implications of these findings and propose a model that may be applicable at this critical thymic NK/T juncture.


Assuntos
Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Citocinas/imunologia , Humanos , Células Progenitoras Linfoides/imunologia , Modelos Imunológicos , Células Progenitoras Mieloides/imunologia , Fatores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...